Normal colour Doppler echocardiogram – stills and video

Echocardiogram in parasternal long axis view

Echocardiogram in parasternal long axis view

Parasternal long axis view is usually the first view obtained during echocardiography. It is obtained by keeping the transducer in the left parasternal region, with the subject in the left lateral position. The beam cuts the heart in its base to apex axis (long axis).  Aortic root (Ao) and valves, left ventricle (LV), left atrium (LA), mitral valve, chordae tendinae, papillary muscles, interventricular septum (IVS) and part of the right ventricle are imaged in this view. Cross section of the descending aorta (Desc Ao) is seen posterior to the left atrium. The coronary sinus can be imaged if it is dilated and will be visible in the atrioventricular groove. A dilated coronary sinus would suggest a persistent left superior vena cava draining into the coronary sinus.  In this still image, the mitral leaflets are closed and aortic leaflets are in the open position.

M Mode echocardiogram at chordal level

M Mode echocardiogram at chordal level

M-Mode examination was the initial mode of echocardiography to begin with and has been largely superseded by other modes of echocardiocardiography. It is still being used for taking measurements of the left ventricle (LV) to calculate the ejection fraction. The M-Mode cut is taken at the chordal level for this purpose. The interventricular septum (IVS) moves downwards in systole, towards the left ventricular cavity. The left ventricular posterior wall (LVPW) moves anteriorly towards the left ventricular cavity in systole. The systolic and diastolic measurements are taken using computerised callipers in the echocardiograph and the software package calculates the dimensions and ejection fraction. The fact that the interface between two different media produces the best echoes is demostrated in the pattern of the inter ventricular septum – both upper and lower margins are echo dense while the intervening tissue is less echo dense. Vertical axis is the depth and horizontal axis is the time.

Pulmonary flow by colour flow mapping in PSAX view

Pulmonary flow by colour flow mapping in PSAX view

Parasternal short axis view is naturally the next view to be obtained after parasternal long axis view as it can be obtained by rotating the transducer without moving from the previous location. Upward direction of the beam images the cross section of aortic root with pulmonary artery curving around it (circle and sausage appearance). This pattern is changed in transposition of great arteries where we get two circles instead. Pulmonary artery is identified by its bifurcation into left and right pulmonay arteries . Colour flow mapping (colour Doppler) shows a blue flow directed away from the transducer. A tiny reverse flow of pulmonary regurgitation can be seen in most normal individuals. It appears like a tiny flame directed upwards from the pulmonary valve in the closed position (seen well in the video at the end of this post). Perimembranous and subpulmonic ventricular septal defects can be imaged in this view and the gradient across if any quantitated.

Pulmonary flow by pulsed Doppler

Pulmonary flow by pulsed Doppler

Pulsed Doppler interrogation is used to evaluate and measure low velocity flows as in case of normal pulmonary flow. The flow is directed downards when imaged from the parasternal location. The upper panel shows the Doppler line and cursor located distal to the pulmonary valve, over the pulmonary artery. High velocity flows can be quantified only by continuous wave (CW). PW: pulsed wave. The velocity in this case is a little over 0.6 m/sec as seen from the scale on the  side of the image. Horizontal axis is time and vertical axis is velocity. High gradients can be documented in pulmonary stenosis.

Left ventricular cross section in parasternal short axis view

Left ventricular cross section in parasternal short axis view

Short axis imaging at the ventricular level can be obtained by directing the beam downwards from the previous positon. It is used to assess the cross section of the mitral valve in mitral stenosis to quantify the mitral valve area. The left ventricular wall motion abnormalities can be visualised well in this view. A portion of the right ventricle is also visible beyond the interventricular septum. Left ventricle has a circular shape in this view and the right ventricle is semi-lunar with the septum convex to the right ventricle.

Apical four chamber view

Apical four chamber view

Apical four chamber view is obtained from the apex of the heart as the name implies. It gives a good image of all four chambers as well as the mitral and tricuspic valves. The inter atrial and interventricular septa are seen in this veiw. The tricuspid valve is attached more distally to the septum than the mitral valve and the region in between is called the atrioventricular septum, which separates the left ventricle from the right atrium. A defect in this location is called a Gerbode ventricular septal defect. Drop outs in the inter atrial septum are common in this view as in this case, whithout any atrial septal defect. This is because the ultra sound beam is parallel to the inter atrial septum in this view and the thin region at the fossa ovalis is often seen as an echo drop out. A subcostal view should be obtained to image the inter atrial septum before concluding that the drop out is an atrial septal defect. A good left to right flow demonstrated by colour Doppler in this view can also be used to confirm the presence of an atrial septal defect in this view, especially if the sub costal view is suboptimal, especially in adults. A slight tilt of fom the apical four chamber view opens up the aortic root and it is called the apical five chamber view. Apical five chamber view is used to measure aortic flow and the gradient in aortic stenosis.

Aortic arch on suprasternal view

Aortic arch on suprasternal view

Supra sternal view is often the last view obtained during echocardiography. The subcostal view has not been demonstrated in this series as the images were not of good quality as is sometimes the case in lean indiviuals with a narrow costal angle. The supra sternal view images the aortic arch and its branches and the proximal descending aorta. This view is used to detect coarctation of aorta and measure gradients across the coarctation. Ascending aorta can also be imaged with a tilt and ascending aortic flow is measured in aortic stenosis to get the gradient across the aortic valve. This is sometimes useful when the gradient is not picked up well in the apical five chamber view.

Video sequence of the images given above can be seen well in this echocardiogram video in a person without any significant structural heart disease.

Add a Comment

Your email address will not be published. Required fields are marked *